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1. Introduction

We consider an experiment to compare v treatments in
b Dblocks of size k each; The model of observations is
assumed to be linear, additive and homoscgdastic; The
problem is to determine an optimal design; that 1is, an
allocation of treatments to blocks that is best in some
sense;

The criterion of optimality depends on the objective of
the experiment; If the objective is to compare all treatments
with one another, then Kiefer, in a series of well known
publications, and other authors have determined families of
optimal designs. One celebrated result is that a BIB Gesign
is optimal in any reasonable sense (Kiefer (1975)).

In many experimental situations, all comparisons between
treatments are not equally important; For example, one
treatment may be a standard. treatment or a control, enjoying
a special status; The rest of the treatments (test treat-
ments) are to be compared with the control - comparisons
among test treatments not being of much importance; Some
optimal designs for these experiments are now avallable in the
1iterature; To get started in the area, the reader may look
at Pearce (1960), Bechhnoffer and Tamhane (1981), Majumdar _
and Notz (1983), Giovagnoli and Wynn (1983), Constantine (1983),
Hedayat and Majumdar (1984), Jacroux (1984), Notz (1984);
This is a 1list of some, though not all, important papers.
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More generally, the treatments may be divided into two
sets, say G and H containing u and w=v - u treat-
ments respectively; All comparisons of two treatments, one
from G and one from H are important, but comparisons within
G or within H are of less consequence; In case one treat-

ment is a control, we take u= 1, Similarly, experiments

could be conducted to compare several treatments

with two or more standard treatments; For example, a factory
may be using two types of equipments for a Job; The obJject
of an experiment could be to determine whether some or all

of three types of new equipments are better than the existing

ones, In thils situation of several controls, both u and w

are 2 or more, Farmers often use several varieties at the

2ot

° i

same time, singe each of them could be suseptible to a different
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disease., Thus, in agricultural experiments, the object could
be to determine which "package" of varieties perform better; ]
or whether some variety from one package should be replaced iy

by a variety from another,
In this article we consider the problem of finding optimal
designs for these and similar situations. Cox (1971, p. 238)
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suggests that if there are several controls, then each of them

may be used once in each block. The rest of the design would T?EE
be a BIB design in the treatments from the other set., We :
shall formulate the problem mathematically in the tradition of e
Kierer; Our criterion will be the sum of the variances of ;;E?
the treatment differences, one from each set, This criterion inﬁ

L
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is statistically meaningful in this context; We shall derive
several methods of obtaining optimal designs - applicable
under different types of experimental situations,

In Section 2 we look at experimental situations with blocks
of small size; that is, k 1s small compared to u and w;
We develop a method of obtaining optimal designs in Theorem
2;1 and obtain some additional refinements for the case
u=w, in Corollary 2;2; When u = w, intuition suggests
that the best desigﬁ might have half of each block filled by
treatments from G, and the other half from H (some adjustments
being needed for odd k's); While we can essentially prove
this for k 2 4, surprisingly it is not true when Kk = 2;

We also glve a catalog of optimal designs for some values
of u and W when k=2 and b < 100,

In Section 3, we look at blocks of large size; The method
of proving optimality is entirely different heré; We prove &
theorem applicable to any linear model, and derive optimal
block designs in a corollary; This also yields previously
unknown results for the case of a single control;

The general theorem of Sectlon 3 is applied to models
eliminating two sources of heterogeneity in Section 4; This
gives us optimal row - column designs; As a consequence we
could generalize some results of Notz (1984) for the case of

a single control,
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2. Optimal Designs in Small Blocks,

| We consider the problem of comparing v <treatments in b ?i 2
blocks of size k each; The treatments can be divided into ag.ﬁ
two sets G and H of u and w (=v-u) treatments respectively; Ei;i
For this section only, we assume that k 1is small; indeed ;ifj
we insist that 1

: : o
| k < min (u, w) | (2.1) -

N - d

' The model 1s additive,homoseedastic and linear; Thls means : _;
that if Y,,, 1is the observation on treatment 1 (Ls1isv) i;;f

i in block Jj (1 s J $b) and plot ¢ ( 1 s £ 5 k), then _--ri-:"-jJ

: Yyg, = Ty + By + Eygy (2.2)

i where eid& are assumed to be uncorrelated random variables ;ﬁij
with mean O and common varlance 02. The unknown constants :?i;
ry and B, represent the effect of treatment 1 and the i;;?

i effect of block J respectively., Let s(u,-w, b, k) be :%;j

; the set of all possible experimental designs, The purpose of '}ii

EE the experiment 1s to compare each treatment from G with fg

; each treatment from H; Comparisons within G and H are of ;i
secondary importance and will play no role in the selection ) :?

: of a design, We want to choose an experimental design from ;ﬁ

! £(u, w, b, k) which minimizes A j

" - R,

o™ 2o hei var(fag - an) (2.3) E

- Oy

E as d varies over all of £(u,w,b, k), Here 468 - Adh ‘*1j

§ denotes the BLUE of -~ v under design d. This criterion ;ﬁ

: can be called the A-criterion since the optimel design ,ﬁ

) —

N :‘-;-;-~-::::'-;-:2~::-.-:'-::I:-:i:-;i:'.'.--:'.;-;l;'2~~::--:'--;:'-::2::2::'¢;I::'-~:l-_~;L~':'-:;2-l;'--i:1~';1-'-:24;:-1:‘.-1;-'-:1-'-::-l';_-iié::»‘:4;;-1::&::-l;';i;:%-:i‘:'&:;‘1-“.-‘.12:&-:-'.1:;j
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I minimizes the average variance of the contrasts of interest,
L Tg ~ Ty 8 €G, h € H. Tne A-criterion is expected to be
N generally acceptable in most situations since it is statistically
. meaningful,

If 4 € 8(u, w, b, k), then we denote by ndij(o $ Nggy < k)

the number of times treatment 1 occurs in block J.

- Ng = (ndij) is the incidence matrix of 4 and
X - ¢ Ha o "
s Cq = Dyp (l/k)Nde 1s the "C -matrix.” Here D,. is a
§1 diagonal matrix consisting of the replications of the treat-
% ments,

ﬁ Let us denote by 1, and I, the vector of n ones and

the nxn identity matrix respectively, and let J 6 = lmlﬁ'
e
- Write

-Iw] ,

Pi= [0"""'1.;,"""0

a Wxv matrix in partitioned form, If
r _ P k
P! = [P1 ces PG] S

then (2.3) can be written as a function of C4; in the form T

Ei ) -, u - ” R

.. ¢(C.) =tr PC,P/ = § tr P,C.PS, A

5 d d i=1 17d"1 v

~ - ' 9

P‘ where Cd is any generalized inverse of Cd' The following is f“ﬁ“
- a useful subclass of vxv matrices, o

: C= [C : C is nonnegative definite, rank C=v - 1, §33ﬂ

C lv = 0 and for some scalars p, q, r, s and t, C ii;;

AN

can be written as I;ig

- n]

- -‘_1

T ":-:'}:'}";'q'}:'f:')' R N T I R R N N N T
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. c - P Iu + q Juu t JuW ) ";.1
: - ]
t Jyu L, + Jw B
‘ For each d € &(u, w, b, k), we define
T b S
i T = I n T = & n = ¢ T '
- A1~ geg  ded” Td2) T pgr dhy7 Tdl T4 Tdly’ o
T 2 S £ T2, S 2 12... We are
= = = ° L
a2 5=1 d2j’ dl j=1 d1J d2 Jml da2j .
s now in a position to state and prove the main theorem of this f‘. o
X section, ::::_;.
i Theorem 2.1, Suppose do' € &(u, w, b, k) is such that —
3 ' R
(1) Cclo € c,' (11) ndoiJ =0orl for all i,j and \i
_3;? (1i1) £(T S, 1) = Min -~ £(Tq,S;q) where R
- dol "dol” ” 4en(u, w, b, k) di’"dl R
2 !
_- £(Ty4qs Sq1) = 12/(1c1*dl - 84q) + (w-1) /Kw(k-l)-k)Tda o
+ 8301 + (u=1)%/[(u(k-1)-k)Ty, + S4;], then dy 1s A-optimal
- in 8(u, w, v, k). 2
.
2 Proof ©Let T be the set of all permutations n of the
treatments which can be expressed as a product n = wg L
§ where Mg is a permutation of G and T, @& permutation of -~ 1
H. Let Q(n) Dbe the corresponding permutation matrix, Then
it is easy to see that '
: B
- =
. ¢(Cq) = s(Q(m)cy al(m)’), )
- _‘.J
e
- e
; E
e e T e N By i i




7.

Moreover, ¢(Cd) is convex in Cd. These two properties imply
that

o(cy) = e(Cy

where C; = [EG(Q(ﬂ)CdQ(ﬂ)')]/u£WI where £ 1is over all =
in T,

* u u
Clearly C4 €Cc with p+qgq= ¢ C4q u, gq= T & c ‘
( £ / c /o
u(u-1), r+ s = ¢ c W, s= ¢ ¢ c 1 /W(w=1)
h=usl ORRT hdh’=u+1 dhh
and t= § ¢ cdgh/uw' Here, we write G = {1,2,...,u},
g=1lh=u+l

H= {(u+tl,...,v}. To evaluate ¢(C;) we must find the eigen-

values and eigenvectors of C;. The eigenvalues can be obtained

from Constantine (1981), 1In fact, we can express C; in its
spectral form as
*
Cd = pE1 + rE2 (Vt)E3’ .
-1 S
I ~u™J 0\
where E1 = ( u o uu L AR
2
0 0 \ woJ - uwJ .. -1
5= (o L, -w o B = (g g ]
The Moore-Penrose inverse of C; is Tl
* -1 -1, . -1 >
Hence, L
* C
¢(Cd) = trace PCS+P' = w(u-1)/p + u(w-1)/r- 1/%, with B
-
pP = u=- ¢ ¢ (n - u u- RSN
dl j=1 g=l dgJ dij ’ S
R
N
S I e T R B A B T B T RSORASSAN
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b 2
=T - £ T -7 -1),
R T 5T (g Taag /s

b
t=- T T
3=1

/uwk = -(KT )/uWk;

alj Tazj a17541

. .
Let us fix lel"f”leb and try to reduce a(cd).

Since, by condition (2,1), T.../u £ k/u < 1,

dlj

b u 2
T T n - /M)S =27, - 8S.,/u,
j=1 g=1- (Rags = By dl " "di

with equality whenever Nioq = O or 1, for all g and J.

gJ

Similarly, since T,../W s 1,

a23
T T (n - M) 2T, -8 S
R anj ~ Tazy a2 ~ Sq2/¥

with equality whenever n =0 or 1, for all h and Jj.

dhj
These relations yield a lower bound to ¢(c;) for fixed

values of lel""’leb’ After some simplifications, we get

. .
8(C4) = ¢(Cy) = uw £(Ty5,,54).

Hence the theorem, i?:g

Remark 1, We can write f(le,Sdl) as a function of T, :
To carry out the minimization of f(?dl,sdl) it could “B:}

be useful to introduce integers bda(a=0,l,...,k), where




b is the number of blocks for whiech T = a, In this
notation = ¢ b, , T = ¥ ab and S = £ a b,y..
=0 da dl =0 da dl =0 da
The problem reduces to minimizing f(le,Sdl) = f*(bdo,...,bdk)
- over 1ﬁtegers bda (¢ = 0,1,...,k), where each bda = 0,1,...,b
and © b =Db, If k 1s small then this problem is not

e=0 da
too time consuming, For example, when k=3, u= 3, w= 4§

and b = 30, the optimal values b, of b, are by=0,
bl = 18, b2 = 12 and h3 = 0; For a clearer represeqtation,
we shall denote the treatments in G by numbers (1,2,...)
and the treatments in H by alphabets (A,B,;;;). The
following design, with columns as blocks, is A-optimal in

3(3,4,3093) .

112112112111111 222222 3333373
233233233AAABBC AAABBC AAABBC
AAABBBCCCBCDCDD BCDCDD BCDCDD

One attractive feature of this example is that only two optimal

b _'s are positive. A study of f£(T Si7), Wwith some examples,
a dl,"qdl

shows that this may not be true, in general., Thus, there is

no guarantee that the treatments from H, as a collection, are
spread as homogeneously as possible over the blocks, which

often happens when u = 1, the single control case (Majumdar

and Notz (1984)).

When Kk = 2, the problem is to minimize l/bdl
+ (u-l)/fbdl + (2 u/(u-l))bdz) + (W‘l)/xbdl + (2 W/(W'l))bdo),




.......
--------------------------------------------

PRl R
................

10.

over integers in the region bdo +'bdl +'bd2 =b, If the
optimal baa is denoted by ba, then the necessary and

sufficient conditions for obtaining an optimal design by the

method of Theorem 2.1 are b, = O(mod w(w-1)/2), b, =0 (mod uw) f}_*

and 'b2 = 0 (mod u(u-1)/2). We shall denote by a

l:a2 the

set of all a2-p1es which can be chosen from a set of a, _:i;
treatments, Also let di denote my copies of w £ 2 1in T{CJ
the treatments from H, d3 denote m3 coples of u g 2

from G and d2 denote m, coples of the uw pairs of

treatments formed by matching a treatment from G with a ;ﬁif
treatment from H. Here by = m) W(w-1)/2, b) = my uw and E;E?:
b, = m, u(u-1)/2. When the necessary and sufficient conditions :i:j
are satisfied the A-optimal design 1is T:T?
B iE

e

We searched and found A-optimal designs for k = 2 in the
range Vv < ¢ s 100 for treatments (u,w) = (2,2), (2,3), RO
(2’4): (2’5)9 (2’6)’ (3:3)9 (3’4)- The catalog of A-optimal .-',i"“:']

designs produced by Theorem 2,1 for these values of the

parameters are given in Table 1, This table gives the optimal
values bo, bl and b2 ‘for combinations of_ u, w and b.

For example, when u=2, w=3, and b = 22, Table 1 shows that g;;e

by=3, b, =18 and b, = 1, Therefore an A-optimal design ‘
in 5(2’3’22’2) iS _F:_.‘:-.:

...........................

---------------------------
-----------------
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1111222111222111222AA8B
2AAAAAABBBBBBCCCCCCBCC

Actually, our search was more extensive, It included all (u,w,

b) values with 2 s u <6, uswse6 and v £b £ 100,
}f For some of these (u,w) combinations no optimal design
F could be obtained by Theorem 2.1 for b g 100. D

Given u,w and b, Theorem 2,1 could give an optimal

design, In case it fails to do so, it still gives a lower
bound to the A-value, a(cd), for a d € c(u,w,b); Usually . e
the experimenter has a fairly good idea of what an efficient ey
design looks 1ike; By comparing the A-value of a design with
the lower bound given by Theorem 2;1 he will be able to ——
make a good assessment of the efficlency of his design; At

the very least, this is expected to be the practical usefulness
of Theorem 2;1; -

The combinatiorial restrictions imposed on do by the w

condition Cd € ¢ are quite severe, Construction of an

0 e
A-optimel design will, in general, be a difficult task, ~—
In case W = u, one can obtain a simplification of Theorem

2.1, This is given in Corollary 2.2.

Corollary 2.2, Suppose W = u ang k24, Let do € s(u,u,b,k) ;E%
be such that o
F;

(i) ndoiJ=O or 1, i’l,.oo,v, J.lgo.ogbo

. e e D O e P PIPR TSN LI S AN

..... ey hl e e g e g L e N e e T g e e
RO ("'A*‘-A'L'-. AR N 'A-.'I‘FA”-. LY .-'.'n":L AN A, AL A A A R '...5 by \‘-‘z. LA
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pI_ + qJ tJ Lo
(ii) c - ( u uu + gu .
dg tJ PI, + Qdy,
uu e
for some p, q and ¢, ,,.,

(111) Ty 1= k/2 when k 1is even
e = [k/2] or [k/2] + 1 when k 1is odd
o e
for each j = 1,,...,0, where ([m] denotes the largest integer k ,
not exceeding m., Then do is A-optimal in £(u,u,b,k).
Proof. Let d ¢ 8(u,u,b,k), Start by defining Cj, the -
average of Cd over all permutations in 1, as in the proof ;if::;;;
of Theorem 2.1, Then define ‘

. 0 I, .0 I,
Cq1 = (Iu o) Cd(xu o)

*% » * * *_
and Cd = (cd + cdl)/a. Observe that ¢(cdl) = ¢(Cd). By
the convexity of ¢,

#(cy) = 8(cy) = a(cy).

c1 1y. cht ( Pt Fua ® g ), wh 4 / :
ear - | where p+q = ¢ v Y
’ d \ t Juu le?'unu ’ i=1 aiiy’ v’ ..:.:
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{ u v >/ ( '
q = ! T Te¢ + &£ c,.'’")2u(u-1)
‘ g4g’=1 dgg h=fn!-1’=u+1dh'h ’
u v :
t = (£ £ cy.)/ve
‘g=1 h=u+l 98

* 3

¢(Cy ) = 2u(u-1)/p - 1/t.
Some computations and an appeal to condition (2;1) Yield,
P s (b k(k(u=-l) -u) + sd)/ku(u-l)
with equality ywhenever ndi,j =0 or b1 for all 1, J Here
Sq =S4 + Sqp- Recall that t = - 331 Tg14 Tdaj/ku2= -vd/kua

b
2
where we write vy = le le,j Tda.j . Since y4 = (ok -Sd )/2,

*
3(y"") = WPy + 8(u-1)2/(2uk(k-1) - 2v,)]}.
It is easy to see that, Max Y4 is achieved when
Tg1y = k/2 when k 1is even
= [k/2] or [k/2]) + 1 when k 1is odd,

for each Jj =1,...,b. In either case, Max Y4 s'“bk‘?/u. Let
us study the function

a(vg) = L/vg + #(u-1)3/(ouk (x-1) - 2v,).

a(yy) 1s convex in vq @and

@(vy)/ 2y, = al('vd)/('vg(buk(k-l) - 2v4)?)
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where al(yd) = e(u-l)yg - ( buk(k-l)'-a'yd)2 . Using some
calculus one can show that, for each u =z 2, al(bk2/4) <0
whenever k = 4, Hence a(vd) is a minimum when v, is
a maximum, This establishes Corollary 2.2.

Table 1 shows that Corollary 2.2 need not hold when k = 2,
For k = 3, the question 1s open,

In some situations an experimenter may be interested only
in comparing the sets of treatments G and H each taken as
a whole, In agricultural experiments the object could be to
determine which of the groups, G or H, results in the best
overall yleld, Here the problem could be to compare the averages

T fg/u and 8 rh/ . So, we have to choose a d in
gE€G heH

A A

&(u,w,b,k) which minimizes Var( T T . /u- T w./W).
geG dg heH dh

Along the lines of Theorem 2,1 it can be shown that if

cdo € ¢ and TdolJ = k/2 if k 4is even and Tdold = [k/2]

or [k/2] + 1 if k 4is odd for all J, then d,. 1is optimal.

0
In fact, no restriction on k, like condition (2.1l), is necessary

for this result,

3. Optimal Designs In Large Blocks
In this section k will usually be large, so that

condition (2.1) is not assumed any more. We shall start by
proving a general result for Gauss Markov models, and then
derive A-optimal designs for particular models,

Let £ be the set of all designs, If d ¢ & then the
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observations Yd will have the Gauss Markov model
2
E(Yd) = Xy40, + X545, Var(Yd) = ¢°I,

Here the vectors 91,62 and the scalar 62 are the unknown
parameters, We will assume that Xiaxl g is nonsingular for

2all d € 3, Define

’ -y’ ' -t
Cq = X1a%1q ~¥1a%2a(X29%04) *20%14

If § 1s a real valued function defined on nonnegative definite

E matrices then dg will be said to be ¢ - optimal for
estimating Q3,, if

w(ch Q') s ¢(Q cgq'), for all d ¢ &.
)

Theorem 3,1, Let ¢ have the property that ¢(A-B) s ¢(A)
whenever A, B and A -B are nonnegative definite, Suppose

do € & satisfies

-1

X.. X (X . X,.) " Q" =0 .1

244" 14, 14, 14, (3.1)
and R -
-1 - 3;ii
s(Q(X ide ldO) Y = e(Q(X’14Xq14) lQ' ) (3.2) o ‘%Z_ﬁ{

for all d e ¢Z.

Then d, 1is ¢ -optimal for estimating Q,el.

[

U
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Proof., Suppose A 1is a positive definite matrix, B is a

nonnegative definite matrix and C= A - B 1s also nonnegative

é definite., Let Q be a matrix with m(Q’) = m(C), where M
_ denotes the column span of a matrix, Then it can be shown that

8 Qe = X’ 1r Bl = 0.

, v
STy ST W U P

: Hence for every d € 8§, o
"acz Q') = *(Q(xidoxmo)'l‘l') oy (3.1),

s QX X 07R) by (3.2),

s s(ecR’),

a
C3 - (X{4%X,4)™" 1s nonnegativedefinite. This establishes

since there exists a generalized inverse C for which

the theorem. _.._4
We shall apply this theorem to the block design model

given in (2.2). Here ei = ('rl,...,-rv) and 5'2 = (51,...,5.0).

For a design 4 ¢ &(u,w,b,k), X’19%X19 = Dgps the diagonal R

matrix showing the replications Py12°°°2Tqy of the treatments;

' . '
){2dx2d = ka H xldxad = Ng» the treatment block incidence
matrix, Let the treatments be divided into two sets G and

H, as in Section 2, and suppose Q is the matrix P defined \ }
in Section 2, § = trace., Equation (3.1) is satisfled whenever :\:
ke

Ny Dgp = A%, (3.3) T

for some diagonal matrix 4A. To find & design 4
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satisfies (3.2) one has to minimize

u v 1 1
> b (r— + (3.4)
g=l h=utl “Fdg dh
over all designs d e 8(u,w,b,k), In (3.4) we are actually
A

minimizing tr V(P9,4),but for a model with no block effects
ByseeesBys while (3.3) is similar to a treatment - block
orthogonality condition, Corollary 3.2 glves one class of

optimal desligns.

Corollary 3,2. Suppose k = O(mod (u + ./uw)) and

k = O(mod (w + Juw)). Let dy € 8(u,w,b,k) satisfy

dogJ = k/(u + ./TI-W-), ndohJ = k/(w + JW)’ (3.5)

for g=l’...’u, h= u+l’...’ V, J=1’w,...,b. Then

d. 1is A-optimal in 8(u,w,b,k).

0
Proof, Consists of verification of (3.3) and a straightforward

solution of (3.4) using Lagrange's multipliers,

Remark. In particular when u = 1, we have the case of a
single control in G and w= v - 1 test treatments in H.

Corollary 3.2 says that as long as

n = Mn
doiJ dolj’
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for each i =2,...,v and Jj=1,,.,..,b, then the resulting
design is A-optimal for control-test treatment comparisons, Here
the control is denoted by 1, and the test treatments by

| 2,.0.s5V. To our knowledge, the result is not available in the

literature,

4, Optimal Row Column Designs.

) Suppose v treatments are to be compared in an rxe

array. The response Yijt inrow J and columm t 1is

« s .

if treatment 1 1is used in cell (j,t); L= 1,...,Vv, J=1,...,T,

! t=1l,...,¢. Here pj is a row effect, n, is a column

effect, is a treatment effect and eijt is a random error.

4
As usual, e's are assumed to be uncorrelated, with zero

expectation and variance 02. The treatments are divided into -

.'-_" ST
LSS GNP S NS

two sets G and H of u and w treatments respectively.

3(u,w,r,c) denotes the set of all designs.

1
_a

Wle shall apply Theorem 3.1 to this setup, Take

!

:E' e:'l. = (Tl’...’TV) and 32 = (pl,...,pr, Tll,...,'nc). As in
, Section 3, dy € S(u,w,r,c) 1is A-optimal if

ottt

. ‘.l" 'l [
S et Tl
PN Pt

A AP D2 -ttt o’ A B L

| ad
IR B SRS
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o)

. . ¢ -l

i MaPa,r = 819y

. (4.2)
- ) -1

i ' NadODd r = 83 Joy,

for diagonal & and A2, and if do minimizes the expression
(3.4). For a design d, we have used N,, to denote its

L2 I

3.2, Let us describe one class of designs which satisfy

treatment-row incidence metrix and N2d its treatment-column

incidence matrix, In the following corollary (A) 13 denotes
- the (1,j)th entry of a matrix A,
)
Corollary 4,1. Suppose r s O(mod(u + ./uw)), r = O(mod(w+./uw)),
5 ¢ = O(mod(u+./uw) and c = O(mod(w+/uw)). Let dgy e 2(u,w,r,c)
. satisfy

== W N 3 uw
(Nldo)g:l e/(u+Jaw), ( ldo)hJ c/(w+Juw),

i (3.3)
(NZdO)gt = r/(u+./uw), (N2do)ht = r/(w+J/uw),
!_ for g=1,.¢e0, y h=u+1l,,.., Vv, J=1,,c00sr, t=1,,...,C. - *
EZ; Then d, 1s A-optimal in S(u,w,r,c).
This corollary can be proved along the lines of Corollary
)

f. (4,3). Let m ©be an integer and consider a latin square of
order s = m(w+ Juw). Change any m symbols of the latin square

to A, any other m symbols to B, and so on, A,B,... denote




................................
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i the treatments in H, while 1,2,.,.. denote the treatments
; in G, Change m(/w/u) symbols to 1, m(./w/u) symbols
3 to 2, and so on, Call the resulting square L,,. Obtain
i L12 by starting with the same or a different square, and doing

similar operations, Get squares Lid’ i=1,2,..., q,,
J=1,2,0005%: in this fashion. Form the 8q; x Sqy array

: L = ((Lij))' Then L 1s an A-optimal design in &(u,w,

5445 sq2). There are plenty of pairs (u,w) for which this
) method can be used - for example u= 4, w= 16,
i This method of construction is a development on a method
i used by Notz (198%4) for control-treatment comparisons, Indeed,
B Corollary 4,1 with u = 1 generalizes Corollary 2,1 of Notz.
i Our proof is also different, Corollary 2.1 of Notz states that

if one starts with a latin square of order p2 + p and
' changes the symbols p2 + 1,...,p2 +p to 0O (the control)
. then the resulting design is A-optimal in s(l,pa,p2+p,p2+p).
j.; We can go a little further than this result of Notz for
f; control-treatment comparisons, If Lij(i = 1,2,..., qq;
! j= 1,2,...,q2) are (p24-p) X (p24- p) squares obtained by \
; Corollary 2.1 of Notz, then the array ((Lij)) is A-optimal .ﬁ
= 2 2 e
+ in 5(1,0%,(p +p)a;,(P"+p)ay). For example, let p = 2, SRRt
P. g, =2 and g, = 3. Then this method will give a patchwork ik
ﬁ of six 6 x 6 squares which is A-optimal in ¢£(1,4,12,18). ff;:
,. '_-.\:31
o There are other methods of obtaining an A-optimal design too, SR
% For example, the layout, R
-': ‘:':‘:':1
2 NN
'-. :.‘~:_'~j
K '-';'-'t‘l
3 ]

-~

N e
R I O 0 S N N S R R S U S I S Jﬁ
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o)
7

11 12
Ly
Spq Co Spo
L,
831 832 Co

is A-optimal in o(1,4,12,18), Here Co 1is a 4 x 4
square ¢cnsisting only of the control.SiJ(i =1,2,3 ; j = 1,2,3)
are 4 w 4 latin squares consisting of test treatments only.

L, and L, are 6 x 6 squares obtained by Corollary 2.1

1l
of Notz (198%).
The optinal designs of Corollaries 3.2 and 4.1 have a
certain model robustness property. For instance, designs
specified by (4.3) remain A-optimal, by Corollary 3.2,
in case row effects are absent (;,.j =0, j=1, 2,..., ),
and even when column effects are also absent (pJ =0, J=1,2,...,r;
n = O, t = 1,2,...5C)
The technique of finding optimal designs, given in Theorem
3.1, can be easily extended to additive models eliminating

several sources of heterogeneity, This would generalize

= Corollary 4.1;

3 Finally we would like to point out that all the A-optimal
‘f designs given in thisarticle arealso optimal under several _'-

other criteria, One of them is MV -optimality. An MV

AL AN
VR L PP I

optimal design minimizes

Max Var(¢ ) =
- P
geG, heH g R
e
Ty
g
R
RSN
om0 e S T e e e AP T e e e L R SGATA R T PN PR RN TR R O
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among all d e &(u,w,b,k) or all 4 ¢ 8(u,w,r,c), as the

case may be,
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